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SUMMARY 

Most of the approaches developed in the literature to elicit the a priori distribution on 
Directed Acyclic Graphs (DAGs) require a full specification of graphs. Nevertheless, 
expert's prior knowledge about conditional independence relations may be weak, making 
the elicitation task troublesome. This paper presents and evaluates an elicitation 
procedure for DAGs which exploits prior knowledge on network topology. The 
elicitation is suited to large Bayesian Networks (BNs) and it accounts for immediate 
causal link and DAG sparsity. We develop a new quasi-Bayesian score function, the P-
metric, to perform structural learning following a score-and-search approach. We tested 
our score function on two different benchmark BNs by varying sample size and prior 
belief concerning structures. Our results show the effectiveness of the proposed method 
and suggest that the use of prior information improves the structural learning process.  

Key words: Bayesian Networks; Structural Learning; Prior Information  

1. Introduction 

Bayesian Networks (BNs) (Jensen, 1996; Pearl, 1988), are a widely used tool in 
many areas of artificial intelligence and automated reasoning, because they 
perform probabilistic inference through very efficient algorithms. However, the 
problem of searching the BN that best depicts the dependence relations entailed 
in a database of cases is hard to solve.  
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The Bayesian approach to structural learning exploits algorithms which 
typically combine expert's knowledge with the information gathered from a 
database. In particular, it assumes that a space of structures is defined and that 
one of these structures is the true model of the process which led to the data 
being observed. Then a prior distribution is defined over the space of structures 
and for any given structure it represents the expert's belief about such 
configuration before considering the data. The prior plus the data lead to the 
posterior distribution over the space of structures, and from a pure Bayesian 
point of view the posterior distribution is the technical goal of structural 
learning.  

Unfortunately the complete specification of a prior distribution on the 
topology of a Bayesian Network (BN) is NP-Hard (Chickering, 1995), and most 
of the approaches in the literature require a complete specification of a prior 
probability distribution on the space of Directed Acyclic Graphs (DAGs). 
Nevertheless, there are problem domains in which such complete elicitation is 
difficult or unfeasible, due to the lack of detailed information about network 
features. A prior state of partial knowledge about a network's topology may take 
several forms, like independence relations among subsets of variables or an 
ordering relation for just a subset of nodes.  

In this paper we develop a method to elicit partial beliefs about a network's 
structure without requiring the a priori complete specification of structures. 
Elicited beliefs are refined by means of dissimilarity measures on the network's 
topology. In order to perform structural learning in a score-and-search 
framework, we propose a new score function to evaluate causal Bayesian 
Networks: the P-metric. It is a quasi-Bayesian score obtained by modifying the 
Bayesian Dirichlet Equivalent metric (BDe) (Heckerman et al., 1994). The 
characteristic of a likelihood equivalent metric is that it assigns the same 
likelihood value to structures entailing the same conditional independence 
assertions. The P-metric exploits prior information to discriminate among 
causal structures within equivalence classes, thus it is not likelihood-equivalent.  

In section 2 we briefly review some basic concepts about Bayesian 
Networks. Section 3 contains a description of early approaches to elicit prior 
information on structures, and in section 4 we detail our approach. A new 
elicitation procedure using the P-metric is presented in section 5. Numerical 
results from the analysis of some Machine Learning benchmark datasets are 
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presented in section 6. Finally, in section 7, we present conclusions and issues 
to be addressed by further research.  

2. Graphs and Bayesian networks 

A review of some important definitions in graph theory and of Markov 
properties is provided. Comprehensive accounts of probabilistic networks may 
be found in Jensen (1996) and Cowell et al. (1999). 

A graph G is an ordered pair (V,E), with V a finite set of nodes {v1, v2, . . .} 
and E ⊂  V ×V the set of edges. If ( ) Evv ji ∈, and ( ) Evv ij ∉,  then there is a 
directed edge from vi to node vj , also denoted as vi → vj . 

Given ( ) Evv ji ∈,  we say that vi and vj are adjacent or neighbourhoods of 
each other: vi is said to be a parent of vj, and vj is also called a child of vi. By 
iterating the two definitions of parent and child recursively, the set of ancestor 
nodes and descendant nodes are defined. An ancestral set A of node α is a 
subset of V in which for each node in A all its parents are in A as well. The 
smallest ancestral set containing a node α is indicated as An(α). A node is called 
a root if it does not have any parent. 

For every Vvi ∈  it holds that ( ) Evv ii ∉,  because a node cannot originate 
an arrow pointing to itself. If ( ) Evv ji ∈, and ( ) Evv ij ∈, then the edge is said to 
be undirected. 

A directed graph GDG contains only directed edges, ( ) Evv ji ∈,  
⇒ ( ) Evv ij ∉, . 

A path connecting two nodes whatever the direction of edges on the path is 
called an adjacency path or chain, to distinguish it from the directed path, dp, 
where edges are all oriented in the same direction, i.e. edges meet head-to-tail 
for each node. A Directed Acyclic Graph (DAG) GD = (V,ED) is a directed graph 
without cycles, i.e. no directed path originated by vi leads back to the starting 
node vi. 

A Bayesian Network B is a graph-based representation of a joint probability 
distribution P which is Markov with respect to the graph. Random variables are 
labelled by nodes in the graph, e.g. 

ivx  with state space 
ivχ  . For shortness, 

labels also sometimes indicate random variables. In this paper we will only 
consider discrete random variables. 
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The Markov property allows the factorization of the joint probability 
distribution following the child-to-parents structure: 

( ) ( )( )∏=
∈Vv

vpav
i

ii
xxpxp |              (1) 

It follows that the joint probability distribution may be represented by a 
collection of conditional probability tables (CPTs) one for every pair (vi, pa(vi)) 
in the graph, with pa(vi) the parent nodes of vi. To every pair vi, pa(vi) of a given 
network Bs is associated a CPT whose parameters are here indicated as 

( )ii vpavs ,,θ , Given the structure s, the vector of all parameters is 

( ){ }
ii vpavss ,,θ=θ . 

A graph GD does not always represent all the conditional independence 
relations entailed by the probability distribution P. If it does, we say that P and 
GD are faithful to each other. The conditional independence relations which are 
not determined by “numerical accident” may be represented by a DAG. In a 
faithful DAG all the conditional independence relations by a BN are revealed by 
assessing the direction-dependent separation property (Geiger and Pearl, 1988), 
also called d-separation (Pearl, 1988). 

Given a DAG GD = (V,E), with ( ) Vvv ji ∈, and ij vv ≠ , let C be a subset of 
V, { }ji vvVC ,\⊂ . We say that vi and vj  are d-separated in GD given C, if and 
only if there exists no adjacency path ap between vi and vj such that: (1) every 
collider on ap is in C or has a descendant in C; (2) no other node on path ap is 
in C.  

The subset C is the so-called cut-set. If vi and vj are not separated given C, 
we say that vi and vj are d-connected given C. The definition of d-separation of 
two nodes can be easily extended to the d-separation of two disjoint sets of 
nodes VX ⊂ and VY ⊂ by iterating the above definition for each pair ( )ji vv , , 
with Xvi ∈ and Yv j ∈ . 

3. Earlier approaches to using prior information on structures in 
learning Bayesian Networks 

In this section we provide a brief overview of the existing approaches to 
including prior information in BN structural learning. It should be noted that the 
elicitation problem for prior beliefs on a network’s structure has been not much 
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considered in the literature, where relatively little attention has been paid to the 
elicitation of beliefs about structures (Friedman and Koller, 2003). 

A straightforward elicitation of prior beliefs on complex structures is 
performed element-by-element, assigning (subjective) probability values to 
graphs defined on a given set V of nodes. The enumerative approach is 
unfeasible except in networks with a very small set of nodes, because the space 
of DAGs has superexponential cardinality as the number of nodes in V 
increases. 

A simpler approach puts a uniform prior distribution on a subset H of all 
possible DAGs (Heckerman et al., 1994; Srinivas et al., 1990), therefore some 
structures are a priori excluded from the scoring procedure. Bounds on some 
structural features are established to set hard constraints on elements in H. For 
example a variable can be declared to be a root/leaf node or the parent of 
another. In addition constraints on the number of parents/children or on partial 
order between variables can be set. This approach has been applied in both 
Bayesian and non-Bayesian learning approaches. 

Two more elaborate approaches have been proposed by Buntine (1991), 
Chickering (1995), and Madingan and Raftery (1994) to define a prior 
distribution on the space of BN structures. Both of them require a complete 
specification of beliefs over the network, making their implementation not very 
practical in large networks. 

In the so-called Buntine approach (Buntine, 1991), an initial partial theory 
provided by the expert is transformed into a prior probability over the space of 
theories. The partial theory consists of: (1) a total ordering p  on variables, such 
that if node y is in the set of parents of node x then xy p  in the relation set; (2) 
a full specification of beliefs for each edge in the directed graph, measured in 
units of subjective probability.  

The joint prior distribution conditioned on the total ordering of variables is 
defined by assuming the independence of parents sets. The joint prior 
probability distribution is factorized as: 

( ) ( )∏
=

=
n

i
is pBp

1
,|,| ξπξ pp  (2) 

By expanding the generic term ( )ξπ ,|pip , we have: 
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( ) ( ) ( )













−→= ∏∏

∉∈ ii y
i

y
ii ,|p.,|xyp,|p

ππ
ξπξξπ ppp 1  (3) 

In the approach proposed by Heckerman et al. (1994) the expert builds a 
complete a priori network, Bsc (s for structure and c for complete), and the 
conditional probability of the next case to be seen (observation on a statistical 
unit) is defined. The joint probability distribution on the domain U of random 
variables is obtained at this purpose, ( )ξ,| SCBUp  where Bsc is the complete 
network. Informative prior distributions for model parameters are built in a 
peculiar way to obtain the so called Bayesian Dirichlet Equivalent metric (BDe 
metric). 

The prior distribution on BN structures is independent from the prior 
network, Bsc, but in their approach, structures closely resembling the prior 
network receive a high prior probability, while others are penalized. The 
number of nodes in the symmetric difference of ( )Si Bπ and ( )SCi Bπ is: 

( ) ( ){ } ( ) ( ){ }|\| SCiSiSCiSii BBBB π∩ππ∪π=δ  (4) 

It follows that the number of different arcs δ between the prior network Bsc 
and a network Bs is ∑ == n

i i1δδ . By introducing the constant 0 ≤· k ≤· 1, the 
prior distribution penalizing networks not much close to the a priori network is 

( ) δξ kcBBp SCS ⋅=,|  (5) 

where c is a normalization constant. 
Finally, the method proposed by Madigan and Raftery (1994) is similar to 

the approach used by Heckerman et al. (1994), but it is coarser in avoiding the 
elicitation of a large number of arc probability values. An arc elicited in one or 
more DAGs is associated to a constant probability value which is higher than 
the value for arcs that do not belong to any elicited DAG. Let ap ε∪ε=ε denote 
the set of all possible links, where pε  is the set of links which are present in the 
model and aε is the set of absent links; they assume that the evidence in favour 
of an included link corresponds to a prior link probability for all pe ε∈  of 

( )
1

2
exp1

−
















 ++= RL OO
ep  

and, similarly, the prior link probabilities for ae ε∈ are given by: 
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( )
1

2
exp1

2
exp

−
















 ++⋅






 += RLRL OOOO
ep  

where the parameters OL and OR are set by the users and their effect is to 
determine the prior bias in favour of arcs included in the model provided by the 
users. 

4. From prior information to score functions 

The specification of a complete prior network with beliefs over all possible 
edges is unrealistic for large networks. The elicitation of expert’s prior 
information element by element is performed through the assignment of 
(subjective) probability values to all possible arrows of a Bayesian Network, as 
in Buntine (1991), but it becomes very difficult due to the superexponential 
cardinality of the space of structures as the number of nodes increases. In large 
networks, a coherent and complete specification of a prior distribution on the 
space of networks (Chickering et al., 1994), would seem to be extremely 
difficult. 

In this section a score function, Sprior(Bs), mirroring prior beliefs, is defined 
to drive score-and-search algorithms for structural learning. It requires far less 
elicitation of prior beliefs from the expert than in Buntine (1991) and 
Heckerman et al. (1994). 

Expert’s prior information on a large problem domain may be strong but 
partial, for example it may deal with the orientation of some edges over 
hundreds, or with global network traits like the size of the graph. In gene 
expression analysis, for example, a small degree of graph connectivity is a 
priori  expected and substantial knowledge may concern the partial ordering of 
ten out of thousands of genes. In order to fully exploit the a priori structural 
information both local and global features have to be taken into account. In our 
approach the expert is expected to express: (1) beliefs over some, but not all, 
possible edges of the network; (2) beliefs over some features of the network 
topology, like the expected number of node parents or the degree of network 
connectivity. 
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Given these assumptions, we propose to elicit the a priori belief on the 
structure of a candidate network Bs by means of a score function Sprior(Bs) 
capturing local and global network features: 

( ) ( ) ( )( )S
T
pSpSprior BSBSfBS ,δ=  

The score component ( )Sp BSδ  refers to edges elicited one at a time. The 
second score component ( )S

T
p BS , describes global network features, related to 

DAG connectivity.  

4.1. Encoding local features 

The score component ( )Sp BSδ  encodes the expert’s belief ξ on the presence of 
oriented edges, each one marginally considered. 

The DAG’s structure is specified by the subset E ⊂  V ×V. We 
conventionally indicate a pair of nodes (vi, vj) in the canonical order i < j , and 
we use the deponent i·j to refer to the edge between nodes vi and vj . A structure 
is more parsimoniously represented by a collection M of F ≤ n(n−1)/2 variables 
M= {m1, . . . mf , . . . ,mF } each one taking values on χ = {− 1, 0, 1} for each pair 
of nodes (vi, vj), i < j, in V . 

The respective values in χ are indicated by: an arrow i ← j, no arrow 
between i and j, and an arrow i → j. Expert’s belief takes the form of a set of 
probability distributions over the collection ( ){ }Mm:|xp:M fmf

∈ξ . 
The distributions over the collection M are coded as vectors of probability 

values ( )1,.0,.1,.. ,, +−= jijiji
T
ji pppP , so that 1TPi·j = 1, where the value pi·j,−1 

represents, for instance, the probability assigned by the expert to the presence of 
the arrow i ← j. 

For each pairs i, j, connectivity vectors Ci·j = (I i·j,−1, Ii·j,0, Ii·j,+1) are introduced 
to indicate the value taken by variables, where I i·j,−1 = 1 if the arrow i ← j exists 
and 0 otherwise. It follows that 1TCi·j = 1. The probability value associated to the 
oriented edge for a pair i · j is j.i

T
j.i PC . 

The above construction leads to the specification of a probability 
distribution on the set of directed graphs GDG in which the candidate directed 
graph BD has a prior probability value equal to: 

( )
{ }
∏=ξ

ji
ji

T
jiD PCBP

.
..|  
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The above factorization refers to our prior judgment about the existence of a 
link between vi and vj without considering other nodes. 

The space of DAGs is contained in the space of Directed Graphs, 

DGD GG ⊆ , therefore the above construction also induces a probability 
distribution over DAGs contained in the space of directed graphs, DGS GB ∈ : 

( ) ( )
{ }
∏⋅∝ξ

ji
ji

T
jiSDAGS PCBIBP

.
..|  (6) 

with IDAG(Bs) taking the value one if Bs is a DAG, zero otherwise. The 
proportionality is due to an omitted constant depending on directed graphs 
which are not DAGs because of cycles. We remark that from a theoretical point 
of view there is no difficulty in calculating the value of the normalization 
constant, but given the huge cardinality of spaces of Directed Graphs the 
computation may not be practical. 
We define the score Sδ(Bs) of a candidate Bayesian Networks using (6): 

( ) ( )
{ }( ) 







ξ
ξ=δ |0

|
log

P

BP
BS S

S  (7) 

with P({ 0}  |δ) the prior probability assigned to the Bayesian Network in which 
E is empty (graphs without edges). By straightforward algebra it may be shown 
that computation of the normalization constant c is not needed in order to search 
in the space of networks. In fact, omitting ξ for simplicity, let PGD(Bs) be the 
probability distribution over DAGs and PGDG(Bs) be the probability distribution 
over the space of Directed Graphs. By straightforward algebra, and deleting δ 
from the notation for simplicity, we have: 

( ) ( )
{ }( ) ( )( ) { }( )( )

( )( ) { }( )( )
( ) ( )( ) ( ) { }( )( )

( )
{ }( ) { } 
















∏

∏
=








=

=−−+=

=−=

=−=













=δ

0
..

..
log

0
log

0loglogloglog

0loglog

0loglog
0

log

ji
T

ji

B
ji

T
ji

DG

SDG

DGSDG

DGSDG

GSG
G

SG
S

PC

PC

P

BP

cPcBPc

cPBcP

PBP
P

BP
BS

S

DD
D

D

 

where ∏ SB
ji

T
ji PC ..  and { }∏ 0

.. ji
T

ji PC refer to factorization of the prior judgment 
respectively over the candidate network Bs and to the empty structure. 
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A remarkable property of the score Sδ(Bs) in equation (7) concerns the 
possibility of calculating scores by just considering the pair of nodes for which 
the expert defined a distribution. Let F be the number of pairs of nodes for 
which the belief has been elicited by the assignment of a distribution ( ){ }Ffxp

fm ,...,1:| =ξ  and let k be the constant values assigned to the F 
−n(n−1)/2 cases for which no belief has been elicited. For any given structure 
Bs we have: 

( )
{ } { }

∏⋅∏=∏=
∉∈ FjiFji

mji
T

jiS kxpPCBP
f

..
.. )(  

and by straightforward algebra we have: 

( ) ( )
{ }( )

{ }{ }
{ }

{ }{ }

{ }
{ }

{ } 



















∏ 








∏ 








=

=





















∏ ∏⋅








∏ ∏⋅
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=

∈

∈

∈ ∉

∈ ∉
δ

Fji
m

Fji

B
m

Fji Fji
m

Fji Fji

B
m

S
S

f

S
f

f

S
f

xp

xp

kxp

kxp

P

BP
BS

.

0

.

. .

0

. .

log

log
0

log

 

with constants k cancelled out. It follows that the number of operations to 
calculate Sδ(Bs) is equal to 2F + 2. 

4.2. Encoding global features 

Partial prior beliefs regarding network topology may take the form of an 
expected degree of connectivity, for example if the expert has clues about the 
expected number of parents/children per node. In gene expression analysis, the 
regulation of one gene is expected to depend on a few other genes, although 
cases of regulation over many different metabolic pathways are known. The 
score component ( )Sp BSτ  captures this class of beliefs about the topology of a 
candidate network. 

In a constructional approach the topology of an n-node network Bs is 
encoded into a n × n connectivity matrix Cs, (Larrañaga and Poza, 1996), whose 
element i, j is 1 if ( )ii vpav ∈ , zero otherwise. The matrix Cs is one-to-one with 
E, therefore it contains the entire structural information. Variables xgf (Bs), 
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f = 1, 2, … are built to capture global network features, such as the mean 
cardinality of parent sets, the DAG size, the number of v-structures appearing 
on a directed path, and the size of a directed path dp ending in a node which 
belongs to the maximal directed path dpmax. 

We consider here variables {xg1 , . . . , xgn} defined to count the number of 
parents for each Vvi ∈ : 

( )∑=∑=
∈Vv

i
j

jig
i

i
vpaCx |. . (8) 

Further variables xgn+1, . . . , xg2n count the number of children in chvi for 
each Vvi ∈ : 

( ) ||.1 ∑=∑=
∈

+
Vv

i
i

jig
i

n
vchCx  

(9) 

The approach adopted here to depict prior beliefs about network topology is 
based on a reference distribution Qpa representing expert’s belief about the 
fraction of total nodes bearing a given number of parents, (0, 1, . . .) and on the 
distribution Ppa,s of relative frequencies calculated on the candidate network. 
The support of Ppa is χ = {0, 1, 2, . . . , n−1}. Whenever elicitation of the proba-
bility distribution on the canonical sample space of the auxiliary variable xgf is 
beyond the expert’s ability, a partitioning of χ into a coarser grid of values is 
performed before elicitation. 

The distribution Ppa,s is compared to Qpa and the degree of dissimilarity 
enters in the score function. The Kullback-Leibler divergence is here adopted to 
assess the degree of dissimilarity among the above distributions: 

( ) ( ) ( )
( )













∑=

xQ

xP
xPQPKL

pa

pa

x
papapa log||  (10) 

Note that the Kullback-Leiber divergence is not symmetrical and is equal to 
0 if and only if papa PQ ≡ . A small value of the distance KL means that the 
candidate network has a structure close to the a priori belief as regards the 
connectivity. 

The score component Sτ(Bs) is defined as a function of the Kullback-Leibler 
divergence: 

( ) ( )( )papaS Q||PKLBS −=τ  (11) 
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Given Ppa and Qpa and j being the number of elements in the partition, the 
computation of Sτ(Bs) takes 3 j + 1 operations. 

4.3. Score function and calibration 

We propose a score function defined by the convex combination of equations 
(7) and (11): 

( ) ( ) ( ) ( )SpSpSprior BSBSBS τδ αα −+= 1  (12) 

with 10 ≤≤ α . By substitution, we have: 

( ) ( )
{ } ( ) ( )( )papa

S
Sprior Q||PKL

P

BP
logBS −−+








= αα 1

0
 (13) 

The role of α is to balance the strength of the components due to edge 
orientation and the strength due to network topology. A value α = 1 is suited to 
the lack of specific prior beliefs on network topology. Without data the best a 
priori structure maximizes (13), which is conveniently reformulated as: 

( ) ( )
{ }

( ) ( )( )













⋅







= −− papa Q||PKLS
Sprior e

P

BP
logBS

α
α

1

0
 (14) 

5. The P-metric 

Structural learning of BNs may be performed using the score function (14) in a 
Bayesian-inspired metric, called P-metric, which mixes prior beliefs and 
experimental information following Heckerman et al. (1994). The BDe metric is 
peculiar in assigning the same likelihood value to structures which are 
likelihood equivalent, i.e. DAGs encoding the same assertions on conditional 
independence relations. The equivalence is obtained by estimating the 
parameters through a prior procedure in which Dirichlet hyperparameters are 
defined using the notion of equivalent sample size. 

The BDe function defined by Heckerman et al. (1994) may be used in both 
causal and acausal networks. 

In order to work with acausal networks, the score equivalence condition 
must be fulfilled. Nevertheless, a prior equivalent score is needed to obtain 
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a score equivalent metric. Neither the prior function proposed in Heckerman et 
al. (1994) nor Sp(Bs) are prior equivalent functions, therefore the proposed 
P-metric is better recommended for learning causal Bayesian networks. 

The P-metric inherits from the BDe function all the assumptions described 
in Heckerman et al. (1994): (1) the database of cases D is a multinomial sample 
from a Bayesian Network with parameters θ; (2) missing data are not allowed; 
(3) the structure Bs defines the number of CPTs needed, each CPT with its own 
parameter θ; (4) parameters for each CPT are independent; (5) given two 
networks B1 and B2 with p(B1 | ξ) > 0 and p(B2 | ξ) > 0, if they are equivalent, 
then they have the same likelihood value; as shown in (11), these five 
assumptions imply that the prior distribution over parameters of each CPT is 
Dirichlet (Cooper and Herskovitz, 1992). 

We propose the P-metric below to assess the score of a candidate structure 
Bs, given a complete database of cases D: 

( ) ( ) ( )θβ ,|. SBDeSpSmetricP BDPBSBS z ⋅=  (15) 

and on the log scale it may be rewritten as: 

( )( ) ( )( ) ( )( )θβ ,|logloglog . SBDeSpzSmetricP BDPBSBS +⋅=  (16) 

The parameter βz is introduced to calibrate the score so that the strength of 
the a priori component is balanced against the contribution of the BDe 
component. The numerical choice of βz is related to the size of node set V , to 
the sample size of cases in the database but also to the strength of the elicited 
beliefs. We propose to define an omnibus-default value for βz that is based on 
indirect assessment of the aforementioned relations by making βz depend on a 
function of the prior score and data likelihood of the empty DAG through a 
user-selected value z which sets the relevance of prior belief: 

{ }( )( )
{ }( )( )0log

,0|log

p

BDe
z S

DP
z

θβ ⋅=  (17) 

with 10 ≤≤ z . Clearly if z = 0 then βz = 0 and the P-metric is equal to the BDe 
metric when uniform prior distribution over structures is assumed. The role of z 
is to set the importance of the prior score with respect to the BDe likelihood 
function. 
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Normalized prior would set a probabilistically coherent calibration in which 
the likelihood function reshapes prior beliefs. 

The P-metric makes it easy to quantify beliefs taking the form of both 
global network features and (marginal) causal assertions concerning pairs of 
variables. The joint use of the prior score Sp(Bs) and of the BDe likelihood 
enables the detection of score differences in causally distinct structures, even if 
they would be collapsed into the same equivalence class by using a uniform 
prior distribution over structures. As shown in section 3, although several 
methods are available to define prior distributions on structures (Buntine, 1991; 
Heckerman et al. ,1994), Sp(Bs) makes the elicitation easy even in large 
networks. 

Numerical investigations in benchmark case studies suggest that the P-
metric is a valuable tool for large and structured domains, like gene expression 
studies. Note that the proposed approach is one step beyond the use of hard 
constraints, which may cause a loss of information and even a biased elicitation. 

6. Results 

We implemented the P-metric on top of the MASTINO package (Mascherini, 
2006), coded in the R environment (Ihaka and Gentleman, 1996), and built on 
the top of the library DEAL (Bøttcher and Dethlefsen, 2003). MASTINO is a 
suite of R functions, which includes several algorithms to learn Bayesian 
Networks. 

The package MASTINO can be freely downloaded from the website 
http://statind.jrc.it/mastino. 

We numerically investigated the P-metric by means of two benchmark 
datasets which are often referred to in the machine learning literature. One is the 
famous ASIA network (Lauritzen and Spiegehalter, 1988) and the other is a 
subnetwork from the Hepatic Glucose Homeostasis network (Le et a.,2004). 
They are both discrete networks of respectively 8 and 20 variables. 

We used the Iterated Hill Climbing with Random Restarts (IHC) 
(Chickering et al., 1995) as heuristic search strategy and we ran the learning 
algorithm over three different samples of 500, 1500, 3000 observations. We 
tested the P-metric for different combinations of parameters zz β∈  and α. 
Finally, we compared our approach against three other algorithms: the PC and 
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NPC algorithm (Spirtes et al., 2000; Steck, 2001), implemented in HUGIN, and 
with the BDe metric (Heckerman et al. ,1994), still using the ICH as search 
algorithm. 

6.1. The ASIA network 

Asia is a small fictitious Bayesian network (Lauritzen and Spiegehalter, 1988), 
to calculate the probability of a patient having tuberculosis, lung cancer or 
bronchitis given values taken by some other variables, like “visit-to-Asia”, 
which is equal to 1 if the patient recently visited Asia. 

All variables in this network are binary. The ASIA network is implemented 
in the software HUGIN (Andreassen et al., 1989), which is also used to generate 
the database of cases. The problem domain here is quite rich: shortness-of-
breath, dyspnoea (D), may be due to different factors, i.e. tuberculosis (T), lung 
cancer (L), bronchitis (B). Then a recent visit to Asia (A) increases the risk of 
tuberculosis, while smoking (S) is known to be a risk factor for both lung cancer 
and bronchitis. Results of a single chest x-ray (X) do not discriminate between 
lung cancer and tuberculosis (E), and neither does the presence or absence of 
dyspnoea. 

The above prior information was supposed to be partially quantified by 
experts concerning three pairs of nodes: (A, T), (S, L) and (L, T). In particular, in 
the adopted expert domain, the node “Tuberculosis” (T) was not reputed to have 
any effect on “Visiting Asia” (A), so the probability of the event A ← T was set 
to be equal to 0.01; then, “Smoking” (S) was believed to have an effect on 
“Lung Cancer” (L) but “Lung Cancer” did not have any effect on “Smoking”. 
The probability of those events was set to P(S → L) = 0.6 and P(S ← L) = 0.01 
respectively. Finally, no effects between “Lung Cancer” and “Tuberculosis” (T) 
were believed to exist, so the probability of the event TL ⇔  was set equal to 
0.8. The uniform distribution was used to complete the probability vectors 
referred to the pairs of nodes listed above. As regards the network topology, it 
was set that 80% of network nodes have at most one parent. 

The elicited prior belief was used to build an instance of the P-metric. The 
structural learning algorithm was repeatedly run for three different sample sizes, 
respectively of 500, 1500 and 3000 cases. Reversed arcs entailing the same 
equivalent structures were considered as correct answers. 
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In order to assess the sensitivity of the P-metric to the input parameters, the 
algorithm’s behaviour was evaluated with different combinations of parameter 
values for z and α. The parameter z was set to take values from the grid {0.1, 
0.25, 0.5}, where the higher the value of z, the stronger is the role of the prior 
information in the proposed metric. Furthermore parameter α takes values from 
the set {0.25, 0.5, 0.75}, where the higher the value of α, the stronger is the 
effect of prior information on local features. When α = 1 the effect of prior 
information on global features is null. For each sample we performed the 
learning process for all possible combinations of z and α. 

Results of sensitivity analysis on the calibrating parameters are shown in 
Table 1, in which the robustness of the P-metric is evident, and it suggests that 
when the sample size is increased the algorithm would find the best network 
even with a smaller contribution of prior information, i.e. smaller values of z. 
Furthermore, for each value of z better performances are reached for higher 
values of α, implying that the contribution of prior information on local features 
is apparently more important than the contribution of global features. Given the 
small size of the network this behaviour was expected. 

The comparison between the ASIA network and those learned by means of 
the P-metric, the PC algorithm, the NPC algorithm and the BDe score was 
performed in terms of number of correctly/incorrectly learned arcs. The 
comparison of P-metric with other algorithms is shown in Table 2. For the 
P-metric we reported the worst and the best performance obtained under 
different configurations of the calibrating parameters. 

Overall the P-metric performed very well by comparison with other well-
known learning algorithms. Our results suggest a general utility of the search 
for optimal structures based on our P-metric. In fact, it is important to notice 
that for all the considered samples the overall performances of the P-metric are 
better than those of all the other algorithms. At sample size of 500 observations, 
the  worst  performance  of  our  score  function  is  equal to the performances of 
other algorithms as regards the number of correct/missing arcs. Nevertheless the 
P-metric can be anyway considered superior, since it does not add incorrect arcs 
to the optimal networks. At other sample sizes, the worst performance of the P-
metric is also better than the performances of other algorithms which 
maintained similar performances at each sample size. In particular, for the 
smallest sample size, in the best case the P-metric discovered 6 arcs out of 8 
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(4 arcs in the worst case), compared with 4 arcs for the BDe, NPC and PC 
algorithms. With a sample size of 1500 observations, the P-metric correctly 
identified 7 arcs in the best case (6 arcs in the worst case) compared with 5 arcs 
 

Table 1. ASIA network: P-metric performances under different combinations 
of parameters. 

Sample z α Correct Incorrect Missing 
500 0.10 0.25 4 0 4 

  0.50 4 0 4 
  0.75 5 0 3 
  1 5 0 3 
 0.25 0.25 4 0 4 
  0.50 4 0 4 
  0.75 5 0 3 
  1 6 0 2 
 0.50 0.25 4 0 4 
  0.50 5 0 3 
  0.75 6 0 2 
  1 6 0 2 

1500 0.10 0.25 5 0 3 
  0.50 5 0 3 
  0.75 6 0 2 
  1 7 0 1 
 0.25 0.25 5 0 3 
  0.50 6 0 2 
  0.75 6 0 2 
  1 7 0 1 
 0.50 0.25 6 0 2 
  0.50 6 0 2 
  0.75 7 0 1 
  1 7 0 1 

3000 0.10 0.25 5 0 3 
  0.50 6 0 2 
  0.75 6 0 2 
  1 7 0 1 
 0.25 0.25 5 0 3 
  0.50 6 0 2 
  0.75 7 0 1 
  1 7 0 1 
 0.50 0.25 6 0 2 
  0.50 6 0 2 
  0.75 7 0 1 
  1 7 0 1 
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Table 2. Comparison of the algorithms’ performances for the ASIA network, 
where P-metric1 and P-metric2 represent the worst and best P-metric 

performance respectively . 

Sample Algorithm Correct Arcs Missing Incorrect Added 
500 PC 4 4 2 

 NPC 4 4 1 
 Bde 4 4 1 
 P-metric1 4 4 0 
 P-metric2 6 2 0 

1500 PC 5 3 0 
 NPC 5 3 1 
 Bde 5 3 2 
 P-metric1 6 2 0 
 P-metric2 7 1 0 

3000 PC 5 3 1 
 NPC 5 3 2 
 Bde 6 2 2 
 P-metric1 6 2 0 
 P-metric2 7 1 0 

 

for the other algorithms. Finally, for the largest sample size, the P-metric again 
discovered 7 arcs (6 arcs in the worst case) compared with 6 arcs for BDe and 5 
arcs for the PC and NPC algorithms. 

Although the performances of all the algorithms improved with increasing 
sample size, it is important to emphasize the robustness shown by the P-metric, 
which – whatever the sample size and the combination of calibrating parameters 
– always obtained better networks than those built by the PC, NPC and BDe 
algorithms. 

6.2. The Hepatic Glucose Homeostasis network:  
       A case study in functional genomics 

The performances of the P-metric were assessed by learning the structure of the 
Hepatic Glucose Homeostasis network (HGH) (Le, 2004). The HGH depicts a 
model for the genetic network controlling glucose metabolism in perinatal 
hepatocyte, where specific focus is placed on the effects of insulin, glucagon 
and glucocorticoid hormones. In addition, several transcription factors known to 
be important in controlling the expression of key genes are also thoroughly 
incorporated in the model. 
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The interactions between the hormones signalling pathways and liver-
specific transcription factors define the genetic network that controls the 
expression of genes maintaining glucose homeostasis in the liver. Each gene is 
modelled here as a node, for a total of 35 nodes in the network. In the original 
HGH network a directed edge from a parent node to a child is added to the 
network when a published resource indicates that the parent gene has a direct 
effect on the transcription process of the child gene. In the HGH network a total 
of 52 modelled regulatory interactions are added. In Le at al. (2004) the data are 
randomly generated using the HGH network, as it would be obtained from 
experiments involving microarrays. 

The HGH network is formed by 20 genes and 33 regulatory interactions, 
because this is the size of the problem domain of our major interest, and to keep 
the computational burden to a reasonable size. The adoption of a simplified 
version of the HGH network is also justified by the limits imposed by the 
implementation of multidimensional arrays in R, currently quite limited, on 
which the package MASTINO is based. 

Prior information takes the form of a plausible partial order on a few 
variables and high levels of network sparsity. Formally, we place high 
plausibility on the event that insulin, glucagon and glucocorticoid hormones 
(respectively IPA, CPA and GPA) preceded AC3, G6P, IP1 and TAT. The 
probability of the event {IPA,CPA,GPA} → {AC3,G6P, IP1, TAT} was set equal 
to 0.50 for each pair of nodes. As regards the network topology of the HGH 
network, we quantified our belief about sparsity setting the cardinality of pa(vi) 
of each node Vvi ∈ to a fairly small value, more precisely 80% of nodes are 
expected to receive less than 3 incoming arrows. 

We tested the P-metric at 3 different sample sizes, 500, 150 and 3000, using 
different combinations of parameters z and α. Data were simulated using the 
software HUGIN (Andreassen et al., 1989), following the same approach of Le 
et al. (2004), in which data were simulated using the BNet toolbox (Murphy, 
2001). Analysis of the algorithm’s sensitivity to choice of parameter values was 
performed by running the algorithm on the aforementioned grid of values for z 
and α described in the ASIA case study. For each sample size we performed the 
learning process for all possible combinations of z and α. 

Results of the sensitivity analysis are shown in Table 3, in which the 
robustness of the proposed approach for the HGH network is also evident at all 
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sample sizes. The difference between the best and the worst network is always 
limited to the orientation of just one arc. Results also suggest that the best 
network is also found if the contribution of the prior information is set to be 
small, i.e. a smaller value of z, whatever the sample size. It is interesting to 
notice that, in contrast with the result obtained for the ASIA network, in this 
case study for each value of z better performances are reached with smaller 
values of α. This result implies that for the HGH network the contribution of 
prior information on network topology is more important than the contribution 
of local features. 

The comparison of the P-metric with other learning algorithms again shows 
the overall good performances of the proposed metric, because at all sample 
sizes the performances of the P-metric were always equal to or better than those 
shown by other algorithms. The results in Table 4 reveal that at the smallest 
sample size, the performance of the proposed score is comparable with that 
obtained with the NPC and PC algorithms, which found 21 and 19 correct arcs 
respectively. The P-metric outperformed the BDe metric, which found 12 
correct arcs while the P-metric found 22 corrected arcs (21 in the worst case). 
At a size of 1500 observations, our metric again outperforms all the other 
algorithms by correctly identifying 25 arcs in the best case (24 arcs in the worst 
case) compared with 22 and 21 arcs for NPC and PC respectively, and 18 arcs 
for the BDe metric. Finally, at the largest sample size, the P-metric discovered 
28 arcs (27 arcs in the worst case), achieving a similar performance to PC and 
NPC and again outperforming BDe, which found 24 arcs. 

7. Conclusions 

In this paper we have defined a new Bayesian-inspired score function, 
called P-metric, to learn the structure of networks representing causal relations 
among variables. The metric component dealing with structural information 
takes account of marginal causal beliefs concerning arcs and global network 
features without requiring the elicitation of a complete network (Buntine, 1991; 
Heckerman et al., 1994). The likelihood component is based on the BDe metric, 
thus it exploits the characteristics of the latter, which are well reported in the 
literature. 
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The BDe metric does not distinguish structures entailing the same condi-
tionnal independence assertions, but our score function makes it possible to 
discriminate structures belonging to the same likelihood equivalence class using 
 
Table 3. HGH network: P-metric performances under different combinations of 

parameters. 

Sample z α Correct Incorrect Missing 
500 0.10 0.25 22 1 11 

  0.50 21 1 12 
  0.75 21 1 12 
  1 21 1 12 
 0.25 0.25 22 1 11 
  0.50 22 1 11 
  0.75 21 1 12 
  1 21 2 12 
 0.50 0.25 22 1 11 
  0.50 22 1 11 
  0.75 21 1 12 
  1 21 2 12 

1500 0.10 0.25 25 1 8 
  0.50 25 1 8 
  0.75 25 1 8 
  1 24 1 9 
 0.25 0.25 25 1 8 
  0.50 25 1 8 
  0.75 24 1 9 
  1 24 2 9 
 0.50 0.25 25 1 8 
  0.50 25 1 8 
  0.75 24 1 9 
  1 24 2 9 

3000 0.10 0.25 28 1 5 
  0.50 28 1 5 
  0.75 27 1 6 
  1 27 1 6 
 0.25 0.25 28 1 5 
  0.50 28 1 5 
  0.75 27 1 6 
  1 27 1 6 
 0.50 0.25 28 1 5 
  0.50 27 1 6 
  0.75 27 1 6 
  1 27 1 6 
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Table 4. Comparison of the algorithms’ performance for the HGH network, 
where P-metric1 and P-metric2 represent the worst and best P-metric 

performance. 

Sample Algorithm Correct Arcs Missing Incorrect Added 
500 PC 19 11 3 

 NPC 21 10 2 
 Bde 12 21 1 
 P-metric1 21 11 2 
 P-metric2 22 10 1 

1500 PC 21 10 3 
 NPC 22 10 2 
 Bde 18 15 1 
 P-metric1 24 8 1 
 P-metric2 25 8 0 

3000 PC 27 2 5 
 NPC 27 3 5 
 Bde 24 9 5 
 P-metric1 27 6 1 
 P-metric2 28 5 1 

 
the elicited causal information. The BDe metric may be used to learn causal 
networks (Heckerman et al., 1994) and our P-metric extends its flexibility. 

Performances of the P-metric were tested under two different Machine 
Learning benchmark datasets, varying the sample size and the structural prior. 
The sensitivity analysis of the P-metric was performed by testing several 
combinations of calibrating parameters. The results were compared against 
three well-known learning algorithms: the PC algorithm (Spirtes et al., 2000), 
the NPC algorithm (Steck, 1990) and the BDe metric (Heckerman et al., 1994). 
Successful numerical findings prove the effectiveness of the P-metric, which 
achieved performances always equal to or better than those shown by other 
algorithms for both the benchmark BNs and at all the sample sizes. In 
particular, it is important to notice that our score always outperforms the BDe 
(i.e. the P-metric when the parameter z is set equal to 0), showing the 
importance of the prior information in the performance of BNs learning 
algorithms. Moreover, sensitivity analysis also highlights the overall robustness 
of the proposed metric, demonstrating the limited effect of the input parameters 
on the score function. 

The P-metric is not highly demanding as regards the elicitation of prior 
information, therefore it could be very useful in large problem domains in 
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which substantial but partial information is available, like gene expression 
studies. In this paper results from the case studies have clearly shown the 
outstanding impact that prior information may have in improving the learning 
process. For the omnibus calibration we proposed, just one parameter, z, besides 
the elicited quantities needs to be set in order to obtain a working algorithm. 
More work is needed to improve the algorithm’s calibration for specific 
problem domains; bootstrapping the omnibus setting might be a good start. 

Search under P-metric may stop at a local maximum, like other greedy 
search algorithms, therefore population based algorithms (Larrañaga and Poza, 
1996; , Mascherini and Stefanini, 2005, Pelikan et al., 1999), might be 
considered as a useful alternative reducing the probability of premature 
convergence. Future work might deal with the development of elicitation aids 
about local features on a grid of values (Jeffreys, 1961). Sensitivity analysis on 
the elicited values would also be useful. 
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